
MATHCAD Program
using Gauss's Method to determine the Orbit
of an object from three measurements.

(Version 16
with speed of 
light correction and one
iteration)

I work in time units of solar days, in distance units of AU (earth orbit radius), and masses of one 
solar mass (M). Then astronomers like to use the Gaussian gravitational constant k. In addition, I 
use mass units of 1 solar mass M.

k 0.01720209895 M0 1 i ..1 3

The coordinates of three different comet measurements are the heliocentric vectors 1, 2, and 3. I 
start with Right Ascension and Declination measured here on Earth. I use α for right ascension 
angle, and δ  for the declination.
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Data is entered in decimal degrees, and converted to radians.

I use time units of Julian dates, and then multiply them by the Gaussian gravitational constant k,
to make the time come out in units of mean solar days.
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Now I need the geocentric Sun positions for the three times. These are from the 1996 Astronomical 
Almanac book, and I interpolate between two adjacent days in the Table to get the right
Julian time.

X
1

.963664 Y
1

0.271679 Z
1

0.117785

X
2

.86156452 Y
2

.456282 Z
2

.197827

X
3

0.33433726 Y
3

0.850871 Z
3

0.368908

R1

X
1

Y
1

Z
1

R2

X
2

Y
2

Z
2

R3

X
3

Y
3

Z
3

R is the solar position for each of the three times

The Earth gets closer to the Sun 
in the Winter.=R1 1.00813248 =R2 0.99479757 =R3 0.98582756

Next I calculate the geocentric unit vectors for each observation from the RA and Declinations 
measured. These are basically the angles to the comet from earth.... but I don't know the distance.
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u1, u2, and u3 are the unit vectors (directions) from the earth to 
the comet for each of the three times, T1, T2, and T3

=u1 1.00000000 =u2 1.00000000 =u3 1.00000000 The vectors do have length 1.

Now Gauss determines the postions at time 2, by using information from times 1 and 3, and the 
Newtonian force law.

Since a simple 2-body orbit will be in one plane, then it is possible to describe the third position 
vector for the object as some linear combination of the other two positions, as long as the other two 
are not parallel to each other. So, for example r2= c1*r1 + c3*r3  What I will do is calculate the 
geometrical coefficients c1 and c3.

 I calculate the geometrical coefficients from the relation of areas swept out per unit time and 
using Kepler's second Law. I am getting this from the book "Introduction to Celestial 
Mechanics", by S. W. McCuskey. First I need to define some coefficients that I will use later.
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I need to solve two equations and two unknowns. They are nonlinear equations, so I could solve 
them graphically, or let the computer do the dirty work for me. These equations use the 
coefficients, which I have already calculated above.

ρ2 5 Now I define starting (guesses) values for ρ  and  rr, the distances from 
the Earth and Sun to the comet, respectively, to be used later as guesses for the 
computer solution. 

x ..,0.85 0.860 50

rr 6 z ..,0.1 0.11 10

This left equation, below,  came from first terms in an expansion of sector/triangle 
ratios by Gauss, and is approximate.
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The  equation above is just the general 
form relating the three sides of a triangle, 
and is exact.
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I can solve the two equations graphically, by 
looking at the graph and seeing the points 
where the two curves intersect.

Given Only one intersection will be the real 
answer.There could be up to three different 
solutions, so I need to check several starting 
values when using the computer solver.

A
B

rr3
ρ2 0 ( )ρ2

2
( )R2 2 ( )..2 ρ2 ( ).u2 R2 rr2 0

Or I use the computer routine "find" function to get the solutions.
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Now the coefficients that give position 2 as a linear combination of positions 1 and 3 can 
be calculated.
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So, finally I have solved for the position vectors of the comet at the three times (ρ1, ρ2, and ρ3).  
Now I can multiply the distances by their unit vectors from Earth and get the Sun-Comet 
heliocentric rectangular equatorial vector positions.
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r  is the heliocentric position vector of the comet

=r10 3.11297449 =r20 2.59276927 =r30 2.13471796



I'm going to correct my observation times for the speed of light now, and then iterate once on my 
coefficients, for an improved calculation.
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These are the corrected coefficents, based on the first estimate of r1, r2, and r3. Now I can use 
the new c1 and c3, to get new and improved b1 and b3.
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Now a new coefficient B can be calculated, and then new estimates for ρ2 and rr. The coefficient 
A has not changed, in this correction.
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The intersection points of these
two curves give possible solution pairs of
the Earth-Comet and Sun-Comet distances 
at Time 2.
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Now I have to go to the ecliptic plane.  Since the Earth axis is tilted by 23 degrees, 27 minutes 
to the plane of the ecliptic this means I have to do a rotation.

N is the 2D 
rotation matrix 
through an angle ε
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Since I am running out of r's to use, I will choose
S to denote the new heliocentric rectangular ecliptic 
coordinates, at each of the three times.S1 .N r1

S2 .N r2

S3 .N r3
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0.82209379=S1 3.15841934

=S2 2.61716294
Just checking that the coordinate rotation did not
change the distances.=S3 2.14587940



--------------------------------------------------------------------------------------------------------------------------
SO,  FROM THE KNOWN POSITIONS AT THE THREE TIMES, THE ORBIT PARAMETERS CAN
BE CALCULATED NEXT.
Finally, I can calculate the six standard orbital elements, in the heliocentric ecliptic coordinate. 
system.

e3 is the new unit vector, which is 
perpendicular to the plane of the 
orbit, ...... that is, perpendicular to 
the two position measurements, 
vectors S1 and S3.
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Omega (Ω) is the longitude of the ascending node of the comet with respect to the line of 
the vernal equinox.  The other two unit vectors in the orbital plane are now defined as:
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Next I will solve for two equations, in two unknowns, ecosω and esinω, which I refer to as XX and YY
e is the eccentricity, and ω is called the argument of the perihelion.

XX 0.1 YY 0.1 Starting guess.
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If eccentricity (ecc) is > 1, the orbit is
a hyperbola..... and does not return.

ecc XX2 YY2 =ecc 0.97927548

If XX is negative, and YY is positive, 
add π to the arctan to put the angle in 
the proper quadrant.  
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=a 45.70426141 (IF a is NEGATIVE, I have a problem !)
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raised to the 3/2 power.
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=E 0.27402958 E is the "eccentric anomaly" angle at time t2

M E .ecc sin( )E =M 0.00902505 M is the "mean anomaly" angle at time t2

T is the time of perihelion passage, in my Julian 
date units.
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P= 2364
a= 186.85

For 
comparison, 
here is JPL 
Solution #48

=P_years 308.99 Orbital Period (in years)

=a 45.704 Semimajor axis (in AU)

The calculated orbital elements from
 my data and calculations are:

=ecc 0.97927548 eccentricity .995107808
=q 0.94719896 distance of perihelion closest approach to sun (in AU.) .914103842
=ι 1.57536489 inclination angle from ecliptic =I 90.26 degrees 89.429449
=ω 2.26208647 Argument of perihelion =W 129.61 degrees 130.5910916
=Ω 4.93651755 longitude of ascending node =O 282.84 degrees 282.470692
=T 541.69083404 Time of perihelion passage 539.6353

My eccentricity is too small, but at least it's under 1.  My distance of perihelion closest approach to 
the sun is 3% too big.  However, my inclination, argument of the perihelion, and longitude of the 
ascending node are very close.  My time of perihelion is also only  two days late.  Overall, it is really 
a quite accurate set of orbital parameters. The main problem is the eccentricity, and the orbital 
period, which is much shorter than the real 2300 years.


