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Nomenclature for thermodynamics

Mass density p and specific volume v: p = 1/v.

intensive extensive
p pressure e internal energy
T temperature | s entropy

Extensive quantities: can integrate over system to find total.
Convention here: use specific quantity (per mass).



What is the equation of state?

What's the pressure’

Material-dependent property, relating thermodynamic
potential and its natural parameters, e.g. de = T'ds — pdv.
EOS is the relation e(s,v) for a material.

Derivatives and other functions of EOS give other quantities:
p, 1", sound speed (32, heat capacity cyp, ...

Perfect gas EOS:

p=nkgT p=(y—1)pe



Uses of the equation of state

Hydrocode / continuum mechanics simulations of impact-type
problems:

Cross-section of armor after perforation by projectile.



Uses of the equation of state

Divide components into small cells, assume conditions are
spatially uniform in each. Need material properties for
simulations.
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Uses of the equation of state

Radiation-driven implosions, e.g. NIF hohlraum-driven fusion
capsule:

QOuter cone
(48° to 60°)

| > . Inner cone
mm T ' y ' (24° to 28°)

Thickness > 30 pm

Source: J. Lindl, “Inertial confinement fusion,” Springer (1998).




Simulation of dynamic loading problems

Initial value problem: given {p,u, e} (7, tg) over some region
{r} € R, what is {p,u,e}(r,t > tg)7

Continuum equations (Lagrangian, neglecting heat conduction):

7, t = u (7
Ip( ta ) _ —p(r, t)diva(r,t)
ou(r,t) 1 p(7T.
ou(r,t) grad t

ot p(7,1) Y

7, t = u (7

de( t7 ) _ —p(7, t)divu(r,t)

Boundary conditions p(7,t) and/or u(7,t) for {r} € dR.

Use EOS p(p,e) — derived from e(s,v) — to complete equations
and allow integration to proceed.



Structure of the equation of state
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Details depend on the material composition.



‘Moderate’ pressure and temperature

, ICF, ...

1oNns

Geophysics, hypervelocity impact, terrestrial explos

—GPa (pspa”) < p < PPa (Gbar)

. ps<t< Qyr

~ 10K < T < MeV
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e(p,T) = ecold(P) + €ion-thermal(P: T) + €glectron-thermal (P, 1))



lagram

Cu phase d
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Energy, EOS, and phase diagram

Given e(p,T) — for a given atomic arrangement — can construct

EOS using 2nd law of thermodynamics:

TdT’@e(v T
T/

from which calculate f(p,T) = e(p,T) — Ts(p,T) = EOS for

this phase.

de = Tds — pdv = S(’UT)_S(‘UO)—I—/

s(v,0): ‘configurational entropy’ — may vary between phases.

At any p, T, equilibrium phase has lowest Gibbs free energy
g = e —Ts+ pv (natural parameters ¢g(71,p) as dg = —sdT + vdp)
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Phase diagram: Fe

Different crystal structures occur in the solid state:
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Multiphase EOS: Fe

e (MJ/kg)
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Source: J. T. Gammel,
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Multiphase EOS: Fe

Source: J. T. Gammel, T-1.
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Thermodynamic completeness

Complete EOS: thermodynamic potential expressed in natural
parameters

e(s,v), f(T,v), g(T,p), h(s,p)

Can derive any thermodynamic parameter from a complete
EOS.

Continuum mechanics:
Op/O0t = —pdivu, 0u/ot= —(1/p)gradp, 0e/dt = —pdivu
only require p(p,e).

Also: easiest to deduce p(p,e) from mechanical measurements.

Incomplete EOS: p(p,e) with no information about T.

‘SESAME’ EOS: e(p,T) and p(p,T): a complete EOS — but
may be inconsistent.
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Predicting the EOS

e(p,T) = ecold(P) t+ €ion-thermal(P: T) + eglectron-thermal(p: 1)
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— solve for electron states for a given set of ion positions (Dirac or
Schrédinger equation).

Electrons are indistinguishable fermions: quantum many-body problem...
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Quantum many-body problem
Ground state of collective wavefunction W: HW = EqW.

Numerical guantum mechanics: based on single-particle
wavefunctions {i;}. Fermions: antisymmetric with respect to
particle exchange (Pauli exclusion principle), e.g. for 2-particle
wavefunctions W(1,2) = —W(2,1), can be satisfied if

w(1,2) = %wlmwz(z) (L)1 (2)].
More generally,

W(1,2,..m) = 3 (v iy (i) = det v (5)
X

where ¢ is a permutation operator — ‘Slater determinant’
approach; in practice prohibitive in computer time.

Differences in the phase of the wavefunctions = correlation
effects: another complication.
18



LLocal density approximation

Assume can approximate exchange and correlation by
modifying the potential energy contribution in the Hamiltonian
to include functions of the local electron density

n(7) = 3 ¢! (7)i (7).

1
These functions are then calibrated against detailed exchange
and correlation calculations for simple systems e.g. uniform
electron gas.

Typical accuracy: a few percent in density at p = 0,7 = 0.
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High temperature EOS

Below ~1 eV: ion-thermal from phonons (Bose-Einstein) and
electron-thermal from band structure around Fermi surface (Fermi-Dirac).

Different ion positions (may be small effect: dominated by p); excited
electrons / ionization; band structure consistent with T'. Treats plasma

seamlessly. Spherical atom model.
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Measuring the EOS
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Isobaric expansion: exploding wire in pressure vessel.
Isotherm: static presses (special case).

Hugoniot: |locus of states accessible by a single shock wave
(can vary its strength).
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Static high pressure

W load

diamond

pressure calibrant
e.g. ruby (fluorescence)

sample

Apply load at known temperature; measure pressure, mass density,
structure, etc. Diagnostics: Xx-ray diffraction, optical properties.

p to ~400 GPa, steady T to 2500 K, higher by laser heating.
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Steady shock waves
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undi _sturbed material

shocked materia | S@ionayiu,=0)

speed U direction
= ——— Of motion

Speed u
S

piston
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Rankine-Hugoniot relations (conservation laws):

io_—pz’ up = V/[(p—po)(vo —v)], e=eo+ %(P + po)(vo — v)

— 3 equations, 5 unknowns = measure 2 quantities to determine state on

2 _ 2
Us — Vg

shock Hugoniot.
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Shock wave experiments

— ways to launch and measure a steady shock:

e Impact experiments (gas gun, powder gun, electromagnetic
flyer, explosively-driven flyer, laser flyer)

e Detonation-driven shock
e Radiation-driven shock (nuclear explosion, laser hohlraum)
e Laser ablation

Aspect ratio: thin samples to preserve 1D region in center.
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Impact experiments

L relegse
of ténsion

()
£
tension
e "shock
target
flyer / position
target impact

“Classical”: same material for both; measure ugyer = 2up and
us from transit time.
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Gas guns

e.g. two-stage light gas gun:

target / catch tank

powder breech

barrel

light gas
(hydrogen)

| |

sabot, flyer : :

piston [ |
| |

| |

| |

| 1 | 1

diagnostics: flyer speed, flatness,
shock transit time, surface velocity
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Electromagnetic launcher

e.g. Z pulsed power machine:

electrical
current flow

each experiment is
L performed in a recess
in the panel wall

/

two or four panels;
two or three
axperiments on each

magnetic pressure
and ablation
accelerate flyer
from surface
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Laser flyer

transparent
substrate
flyer

_________ ] (up to ~Imm thick)
I _ acceleration
_________ — by expanding
_________ s plasma

|aser

pulse

/ \\ aluminum (4.0)
carbon (0.5) alumina (0.5)

aluminum (0.5)
coatings (thickness in microns)

Design: D.L. Paisley, P-24
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Laser flyer

10 mm

substrate spacer ring

flyer
(soda-lime glass) (dried coffee) (copp)(/ar)
working fluid assembly
(molasses) (view through substrate)
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Radiative ablation

Material ablation drives shock wave by reaction and plasma pressure.

reference
material
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Radiation source: nuclear explosion, laser hohlraum, laser ablation.
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Other shock diagnostics

point source
of X-rays

\

laser beam
to generate X-rays

surface velocimetry, radiography, transient x-ray diffraction

X-ray streak camera

Laue reflection(s)

laser beam
to drive shock

crystal

Bragg reflection(s)

X-ray streak camera
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Surface velocimetry

Doppler shift of reflected laser light.

Example velocity history as shock reaches surface:

spall and ringing

plastic shock

velocity

elastic precursor

time
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Transient x-ray diffraction

Si crystal, (100) orientation, 40 um thick by 10 mm across:
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Quasi-isentropic compression

sample
- T N\ /
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loading wave | — illuminates target
| to generate
—_— .
_ | — dynamic load
velocimetry |
I —
|
! T

plasma blowoff
from surface
supports compression
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Quasi-isentropic compression

Si, TRIDENT shot 15018:

laser irradiance .

free surface velocity

30 pm 59 ym -

irradiance (PW/mZ), velocity (km/s)
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Acetone;:

shock speed (km/s)
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Empirical mechanical EOS

Functional fit to us — u, data, e.g. Steinberg polynomial:

n U 1—1
_ P
us = co + E si | — Up,
— Us
1=

R-H relations for states on the Hugoniot. Additional assumption to calculate
states off-Hugoniot: Gruneisen approximation,

p(p;e) = prer(p) + T(p) [e — eraf(p)] -

Thus
p(p,e) = % 4 [Fo 4+ bu(p)] poe
where u(p) = p/po — 1,
F(p,e) = pocgp{l~+ p[(1—"To/2) —pub/2]}
n —1
_ _ "
H(p,e) = 14up u[;@(qul) ]

(thermodynamically incomplete).
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Accuracy of empirical EOS

Shock Hugoniot for solid and porous Al; empirical EOS fitted
to us — up; [(p) estimated from slope of us — uy:

12
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Accuracy of empirical EOS

Shock Hugoniot for solid and porous Al; empirical EOS fitted
to us — up; (p) adjusted to reproduce porous Hugoniot points:
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Accuracy of theoretical EOS

Shock Hugoniot for solid and porous Al; theoretical EOS uses
ab initio quantum mechanics:
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Limitations and current research

Thermodynamic equilibrium
— electronic states: ‘non-LTE effects’ (below ns)

— atomic configuration: phase change dynamics (ps to
Myr)

Stress tensor: decomposition into EOS and stress deviator
not always valid.

Measurement of temperatures in shock experiments is
difficult — how to test theoretical EOS?

Accuracy of quantum mechanical EOS predictions,
especially for f-electron materials (lanthanides and
actinides).
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Stress in continuum mechanics

What's the stress? (tensor

Strain tensor e(r), stress tensor 7(p,T,e) — generalized EOS.

Deviatoric decomposition:

1

e=upul+e T=-pl+o;, p=zTre, pz—gTrT

Assumption that scalar properties are independent: p(u,T),
o(u,T,e).
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Uniqueness of the EOS

QM prediction of stress tensor in Be for different elastic strains:
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D.C. Swift and G.J. Ackland, Appl. Phys. Lett. 86, 6 (2003).
— at the end of the day, the EOS may not really exist!
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