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Our primary applications of
non-thermal plasma processing

Pollutant/Hazardous Chemical | Surface Modification or

Destruction Decontamination

Air pollutants Modification

*VOCs eAdhesion

*NO,, SO, #Stain resistance

#Odors (H,S, food processing) eDye uptake
Environmental remediation Decontamination
#VOCs/haz chemicals in soil or «Chem/bio warfare agents
groundwater eActinides

Combustion enhancement Combined systems

«IC engines (automotive) eThermal packed-bed reactor + NTP
*Gas turbines reactor for haz chem destruction
eBurners

Non-thermal Plasmas Decompose Pollutants
Via Active Species Generated in the Process Gas

Electrical Energy
Influent Stream Effluent Stream
(wipoliutants) b o (w/decomposed P
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Example Radical Formation Mechanisms

Electron impact lonization/Clusters

e+0, > O+0*+e e+0;, » O +e

e+N, > N+N+e 0" +H,0 - 0" (H,0)

e+NO - N+O+e 0" (H20) + H,0 — HO3" + O, + OH
e+0, > O+0+e 0," (H20) + H,0 — HO3" (OH) + O,
e+H,0 - OH+H+e HO3" (OH) + H,0 — HO3' + H,O + OH
e+Ny > Ny*+e

e+NH; > NH+H,+e

Quenching Others

O*+H,0 —» 20H H+ O3 - OH+ O,

N*+0; > N,+O0+0 HO, + NO — OH + NO;
H+0,+M —» HO+M

In chlorocarbon-containing mixtures, Cl and CIO radicals are also produced from reactions
of radicals and other gas species with the entrained pollutants. These can further
participate in decomposition chain reactions.




Molecular Oxygen Potential Energy Diagram
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The radical production efficiency (G-value)
depends on the gaseous electronics. Radical
generation is mainly initiated by energetic-electron

collisions.

ey krad
G=f €
Vd N

. E/N is the reduced field,

. Vy is the electron drift velocity, which depends on E/N,

kraq is the rate constant for radical formation (e.g., a dissociation
rate constant, which depends on E/N), and/or other rate
constants.

By increasing the plasma electron
temperature, radical yields are increased.

Mean Electron Energy Radical Production Efficiencies
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Air-like mixture example - Left: Electron temperature vs E/N. Right: O-atom and N-

radical yields. Common electrical-discharge nonthermal plasma reactors operate
around 100 Td. T, and the radical yields can dramatically increase at higher E/N.

The overall process efficiency can be effectively
separated into two terms: the radical production
efficiency and the radical utilization efficiency.

MNnet = Gr Nu

. Gris the radical-production efficiency (mainly depends on
gaseous electronics/plasma chemistry)

« Tu is the radical utilization efficiency (mainly depends on
chemical kinetics)




Gas-phase plasma chemical
decomposition is driven by
electron impact and radical
attack.

(1) e+ X — products
(2) O, OH, N, etc. + X — products

« Thefirst reaction is dominant at
large pollutant mole fractions.

« The second dominates at smaller
mole fractions.

(More energy is directly absorbed by
pollutant at high mole fraction,
hence electron channel
dominates.)

Plasma chemical decomposition
of VOCs produces a variety of
terminal products.

e, O, OH, N, etc. + X — products

*Manageable products: CO,, CO, Cl,,

HCI, COCl,

*Undesirable products: Other
halocarbons, hazardous byproducts
(e.g., DCAC - CHCI2COCI); polymers

*Secondary treatment:

CO, + NaOH — NaHCO,

CO + catalyst»> CO,

Cl, + NaHCO;— NaCl + HCl + ...
HCI + NaOH — NaCl + H,0
COCl, + H,0— 2HCI + CO,

Major de-NOx Reactions in Moist

Gas Mixtures w/o HCs

O+NO+M —» NO,+M N(?D) + H,0 — NH + OH
O +NO, > NO+0O, NH+NO — N, +OH
O+N, > NO+N NH+ O, - NO + OH
0+0,+M —» O;+M NO + NO; — 2NO,
0;+NO —» NO,+0, NO + OH +M — HNO, + M
O3 +NO, - NO; + 0O, OH + HNO, —» NO, +H,0
NO, +NO; +M — N,O;+M OH +NO,+M — HNO; +M
N(D)+ 0, - NO+O N+NO, - N,+0O,
N+NO —» N,+0O N+N,O0 — NO +N,

N(D) + NO — N, + O('D) O('D) +NO, - NO + 0O,
N+NO, - N,O+O O('D) + N,O — 2NO or N, +0,
N +NO, —» 2NO N,(A) + O, - N, +20

N,(A) + N,O — N, +N+NO
Primary Acid-Formation Pathways:

NO + OH +M — HNO, + M
OH+NO,+M — HNO, +M

With ammonia (NH;) addition, useful
particulates (fertilizer) can be formed

from NO,

e+NH; > NH,+H+e
e+NH, > NH+H+e
NH+H — N+H,
NH, + NO — N, +H,0
NH +NO — N, + OH
N+NO — N,+0O
OH +NH; — NH, +H,0
OH+NO+M — HNO,+M
OH + HNO, —» NO, + H20
OH+NO,+M — HNO; +M

NH; + HNO; — NH,NO,
(Ammonium Nitrate fertilizer)

Simple, first-order kinetics model gives
exponential pollutant-removal function.

Chemical Reactions Rate Equations

e+A o R +A (1) dR]_d[R] dE_ 5
dt  dE dt

R*+X — Products )] %:—k[RJ[X]

R*+Sj— Products @) %:—ksl[R][&]

d[Rr: =
Assume steady state: %(nﬁt) =GP—kIRIIX]- Xk, [RIIS1=0.

Solve for [R]ss and insert into (2) to obtain generalized removal equation.




A generalized removal equation depends on
plasma chemistry (radical yields), reaction
chemistry, and applied plasma specific energy.

Generalized differential equation:
K[X1+ 2k, [S1] b
S O d[X]=-GdE

Integration with limits [X]o = [X]
and 0 —» E gives:

(x] st. CI =

X, g, XX,

For low degree of removal (i.e.,
[X1/IX]o ~ 1 +In { [X]/[X]o} ), an
analytical solution is obtained:

[X1/[X]o = exp (-E/ B)
where

2k 8]
p=5 (1 T—)

When k [X] << Z kg; [S]], the B-value
and, hence the degree of removal

[X]/ [X]o shows no dependence on the
initial concentration [X]o.

The simple model predicts the form of the
removal function (plot of degree of removal vs
plasma specific energy).

5 i kg [S] <<k [X]o

1.000

1,000 ppm
o
0.100

[XVIX],

500 ppm

[ | 100 ppm ™~

0,010 Ll b Nt
0 50 100 150 200

E (J/std lit)

[XVIX],

1.00
0.80 |- B
060 \ 1
\
N 1g0ppm
0.40 N\
\
N
500 ppm \\\\
A\
0.20 |- 100pem” N\
\\
N\
0.10 TR AN I B

; kg; [S]>> K [X]o

0 250 500 750 1000
E (Jstd lit)

Example removal data for various compounds
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Example removal data for sample compounds
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Example recombination-dominated removal

plot (cal

Additional example case (explicit
residence-time dependence):
% ksi [Si] >> k [X]o and dominant
scavenging pathway is recombination
of the radicals, e.g., [R"] = [S], where S
represents the primary scavenger

[R'] = (GP /kq) %

MZik 5 1/2dt
[x] ks

[XV[X]o = exp {- k (GE/ks)"?
_cr1l2 }
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Ballpark B-value calculation for TCE
(C,HCly) in adry, air-like gas mixture

Simple Chemical Model
1)e+0, > O+0+e G (O) ~ 10 molec/100 eV

2) O+ TCE — Products
3)0+0,+M —» O;+M

ky=5.3x10"cm’s
ks = 6.1 x 10 cm®s (for M = O5)

K3 =5.9x 10 cm®s (for M = N,)

B-Value Estimates

Without Chain Reactions

B = 1/G {[Xlo + 1/ky (ks [O5]% +
k'3 [O2] [N2] )}
B ~ 260 Jlliter

With CI Chain Reactions

Chain length 2: B ~ 130 J/liter
Chain length 5: B ~ 52 J/liter
Chain length 10: B ~ 26 J/liter

We mainly employ four types of NTP reactors

Silent discharge
(dielectric-barrier discharge)

Pulsed or DC corona

Gas in
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Silent Discharge Plasma (SDP) or Dielectric-

Barrier Discharg

e Fundamentals

Illustration of SDP Reactor

Dielectric
Barrier Metal

fleclrode

O(P)
OH

Microdischarge

«Dielectric-Barrier Discharge (DBD)
inventen by W. von Siemens in 1857
*Referred to as Silent Electrical
Discharge by Andrews & Tait, 1860
*Used for over 150 years to produce
ozone

«Is a non-thermal plasma (electrons are
‘hot’, while ions & neutrals are ‘cold”)

Illustration of Microdischarge
FD\elednc

Microdischarge————| [fr 4 +~— Gas
space

\__ Metal

electrode

Microdischarge Properties

Parameter Symbol Typical value
Channel radius r ~ 100 ym

Microdischarge duration 4 2315

Electron density [e] ~10%cm?

Reduced electric field EIN 100-200 Td (or 10 V-cm?)
Average electron temperature_| T, Dim_| 45 eV

Current density. J - 1kAlm*

Electron drift velocity Vg ~2x10 cmisec




Typical operating parameters: E/N and E,,,

Sparking Voltage
(from Heylen, 2001)
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Silent Electrical Discharge Reactor
Schematic & Electrical Waveforms
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Pulsed corona reactor (PCR) circuit
schematic and waveforms
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Cruise Missile Engine Test Cell De-NO, Demo
at Tinker AFB Employing CRS System

Exhaust

Pump/
Blower
NTP
Reactor
System
Dilution Air 1
- = EXnaust Exhaust
m = Duct Plenum N
P Room Sampling Sampling
/_,l a &
Analysis Analysis
System System

Schematic diagram of small, pilot-scale Corona
Radical Shower (CRS) non-thermal plasma
(NTP) reactor for NO, abatement from jet-

engine test cells

Intake Electrostatic
Ductwork Ductwork Filter Bank Gas
Outlet
CRS
Gas Plasma
Inlet Reactor

Catalytic Ductwaork Centrifugal
[Power Converter Fan
Supply Bank

Cruise Missile Engine Test Cell
Exhaust De-Nox Demonstration at
Tinker AFB Using Corona Radical

Shower NTP Reactor
Mar/Apr 2000

Removal of NO, species, CRS NTP catalytic hybrid
system field-pilot tests on a CMTC at Tinker AFB
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Environmental restoration field-pilot
demonstration at McClellan AFB

Silent discharge
(dielectric-barrier discharge)

HV Transformer  Effluent Pipe

Cold Plasma Processor
Control & Data System

18-kW Power Supy
Influent P\pe—\

lllustration of mobile dielectric-
barrier NTP reactor system
employed for VOC

“— Gas Extraction Well

k Heat Exchanger

decomposition tests at
McClellan AFB. Each plasma
reactor tank operated at up to
10 kW of plasma power.

CRADASs with the Electric Power
Research Institute (EPRI) & High
Mesa Technologies (HMT) were
an essential part of the
development & fielding of this
equipment.

Photos of the VOC vacuum-

extraction wells, associated piping
and equipment, and the SDP
remediation-equipment trailer at |
McClellan Air Force Base. The
SDP-cell and transformer-tanks [
can be seen in the rear view of

‘ the trailer,

Assembling two 5-SCFM

(142 liVmin) SDP processor units, |
each containing two 10-cell
modules, in the equipment trailer ‘
at McClellan Air Force Base, The
plasma power for each 5-SCFM

unit is about 10 kW.

‘ Photos of the monitor which
displays data from the computer-

control system for SDP remedia-
tion equipment. Photos taken
during initial equipment shake-
down tests at McClellan Air Force
Base.




«~— APPJ

Tantalum Plasma

foil \ «— effluent

Heated
base 300°C

» Ta used as surrogate for Pu due to thermodynamic similarities
» Typical etch rates > 10 mg/min over ~ 1.1 cm? area

+ Ta(s) + 5F(g) = TaF4(g)

(equivalent to ~ 5.5 um/min)

Concept for Decontamination of Actinides, such as
Plutonium and Uranium

Pu Contaminated
Surface

Cartridge
Filters

Decon Benefits:

* Dry- no secondary waste
stream

« Actinides recoverable
 Endpoint detection possible

»
PLASMA JET l
-

Rolling/

Seal

» Decon Concept = Volume Reduction

 Energetic plasma electrons dissociate CF,/NF; forming F atoms

» Atomic Fluorine etches contamination: Pu(s) + 6F(g) = PuF(g)
Volatile byproducts (e.g., PuFg) captured in reactive or adsort)gnt filters

2
» Los Alamos
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Comparison with Post-Plasma Chemistry Simulation
(at 300 K calculated by Hilary Teslow)
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* At room temperature caleulation {cf. measured T, ~ 35 (),
F decays fast, order of 2, within | ms producing O,F (F + O, = O,F).
» I' can be short-lived metal ctehing agent. 0,17 can be a newly found
long-lived etching agent. ~

1st Measurements of [O,F] in APPJ (by Y. Kim)
[O.F] in He/O,/CF, Discharge (CF, =2 %)
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« [O.F] was around 10" at 2 % CF, = O.F is long-lived species

* (,F may be ewching agent = O,F may be decomposed on Ta surface w O, and
F, then F etches Ta (Ta - O.F = TaF - Q).
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CBW Agent Decon with APPJ - Surrogate Tests:

BG <> Anthrax, Malathion <> Nerve Agents
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Preliminary experiments have proven the
enhancement concept

NTP combustion
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Flow (C5Hg) = 0.3 Ipm, Flow (Air) = 4.6 Ipm

SDP reactor outperforms PCR in terms of plasma
energy density
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Specific Energy (J/std lit)
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|_Kim Stange, Ferreri (6/2004) _
Series inverter powers SDP reactors L n A R OO Ty
effectively & efficiently ecnno Ogy- eve opme|:1 motiva (?FS are
regulatory, economic, and social
Regulatory
\ o New and/or more stringent regulations
L ed | . & % Clean Air Act Amendment of 1990, Clean Water Act
S o Attendant MACT standards
T el Enforcement of regulations
-1 S -~ New NO,/SO, regulations (2007 — 2010)
ey — Economic
g & - : Impact of regulations
m.. ;;m % Costs associated with conventional methods
(0]
Social
Environmental consciousness
Health risks
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The CAAA 1990 contains three titles closely
related to new technologies (e.g., NTPs)

Title IIl (Air Toxics)
Directly concerned with emission of hazardous air pollutants (HAPs)
Established standards for 189 listed chemicals

Title IV (Acid Rain)
Reduction of SO,/NO, emissions

Title VI (Stratospheric Ozone)
Phase out of VOCs

MACT (Max Achievable Control Technology) Standards
Calls for state-of-art pollution control equipment
Require changes in equipment, processes, treatment

Outline

Overview of Applications of NTPs for Air Pollution Control and Surface Decontamination
Stack emissions (VOCs, NOx/SOx)
Environmental remediation (hazardous chemicals in soil and/or groundwater)
Surface decor i ini chemi iological warfare agents)
Combustion enhancement

Applied Electrical Discharge Physics
Streamers/microdischarges (corona and silent electrical discharges)
Atmospheric pressure RF-driven discharges

Plasma Chemistry and Gas-Phase Reaction Chemistry
Electron-energy distribution functions, transport coefficients, and rate coefficients
Active Species (Free Radical) Yields in Electrical-Discharge Driven NTPs
Electron/radical attack mechanisms
Simple reactions/scaling laws

Power Conditioning & Electrical Measurements for NTP Applications
Power supplies/modulators for NTP processing
Voltage and power measurements for corona processing
Voltage and power measurements for silent discharge processing

Example Laboratory and Field Demonstrations.
Soil/groundwater remediation
Engine test facility exhaust
Surface decontamination
Combustion enhancement of propane-air flames

Summary and Future Outlook
Regulatory factors
Social/health factors
Energy efficiency
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