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Outline
• Motivations
• Diversity of plasma diagnostics
• General classification
• How to choose the right one: plasma parameters and 

physics are the starting point
• Magnetic field and current measurements

– RSX -> invasive
– TCV -> non-invasive

• Electron Temperature measurement
– Active diagnostic: Thomson scattering
– Passive diagnostic: two foil method
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Why study plasma diagnostics?
1. Necessary for practical control of the plasma:

(plasma current, position feedback, impurity 
content, fusion power)

2. Necessary for a precise understanding of physical 
phenomena (reality check for plasma theory, avoid 
cold-fusion mistakes)

3. Discoveries made by improved diagnostics 
(sawtooth instabilities from soft x-ray, advanced 
tokamaks from current profile measurements)

4. Spin-off in other fields (laser scattering for textile 
fiber analysis, …)
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Plasma diagnostics: How many ?
Too many!!!

Diagnostics DiagnosticsMeasured parameter Measured parameter

List of TCV diagnostics
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Why are they so many?
1. Plasmas are extremely complex media (lots of chemical 

and physical phenomena: dissociation, recombination, 
ionization, waves, instabilities, shocks)

• lots of parameters to measure (ne, Te, ni, Ti, B, visible, 
VUV, IR, soft X, hard X emission, neutrons)

• lots of physical phenomena providing the background for 
measurements (scattering, interference, emission of 
electromagnetic radiation, …) 

2. Plasmas span a wide range of parameters

• Different technologies, constraints and implementations of 
diagnostics to measure the same quantity ⇒ choose the 
right one!!!
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An example of complexity: spectrum of 
emission of a fusion plasma
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Plasmas span a wide range of parameters

RSX FRX-LTCV tokamak

Te~15KeV, ne~1020m-3, τ~4s,m 
size, IP~1MA, B~1T

Te~10eV, ne~1019m-3, τ~10ms,cm 
size, IP~1kA, B~0.1T

Te~200eV, ne~1022m-3, τ~12µs,cm 
size, IP~1MA, B~3T
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Different plasmas have different constraints

Langmuir probes are commonly 
used in small lab plasmas with 
small heat flux to the probe

An attempt of using a 
Langmuir probe into a 
too hot plasma…

Lesson learned: choose the right diagnostic!
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An attempt to classify plasma diagnostics

Active diagnostics or “probing the plasma” (ex: a laser beam is 
injected in the plasma and the scattered wave is detected. The electron 
density and temperature can be calculated.)

Passive diagnostics or “looking at the plasma” (ex: soft X-rays 
are emitted from the plasma and detected by photodiodes through 
different filters. The ratio of the two signals can provide Te)

Invasive: perturb 
the plasma

Non-Invasive: do not 
perturb the plasma
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How to choose: physics first!!!
1. Space and time resolution (determined by the size and the 

timescale of the physical phenomenon in which we are 
interested) ⇒ good knowledge of the physics an plasma 
parameters in order to choose the good diagnostic!

2. Signal/noise level (could be a factor that determines the 
choice of the diagnostic)

3. Calibration (can be done on a workbench, or diagnostics can 
be cross-calibrated)

4. Good understanding of the physics that is beyond the 
measurement (two classes: 1) easy measurements, difficult 
interpretation, ex. Langmuir; 2) difficult measurement, easy 
interpretation, ex. Thomson scattering)
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Magnetic measurements:different plasma 
parameters and physics ⇒ different constraints

Plasma: Te~10eV, ne~1019m3, τ~10ms, 
cm size, IP~1kA, B~0.1T

Physics: magnetic reconnection 
(µs)

1. B probe can be placed inside 
the plasma: thermal, electrical 
shielding

2. Small B, IP,

3. Need to the very small (1mm)

4. Need to be very fast (f > 5MHz)

Plasma: Te~15KeV, ne~1020m-3, 
τ~4s, m size, IP~1MA, B~1T

Physics: control of the plasma (ms),
MHD instability (1/10 ms)

1. No physical contact of B probe 
with the plasma

2. High B, IP, high signal-to-noise 
ratio, no electrostatic shielding

3. Can be fairly big (few cm)

4. Not particularly fast (f~100kHz)

RSX TCV
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Passive diagnostics: magnetic field
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Animated demonstration of Faraday’s law
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Passive diagnostics: Rogowski coil for plasma 
current measurements
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Implementation on TCV

200 magnetic coils (cm size)

1. Control of plasma

2. Shape of plasma

3. MHD mode identification

Single Rogowski coil

1. Total plasma current
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Implementation on RSX:
2D magnetic probes

Pirex tubing for thermal and electrical insulation
(heat load ~ 30J)

Electrostatic shield (SS)

12 magnetic coils, 2 spatial dimensions
each coil, high freq. Response~20MHz
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The probe is inserted into the RSX plasma and 
provide time and space resolved data

Current ramp up

Starting of coalescence

X-Point

Flux ropes
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Implementation on RSX: Rogowski probe
BN shell

1. High heat flux~100 J

2. Thermal, electrical insulation (BN)

3. Electrostatic shield (SS)

4. High freq. response ~ 5 MHz
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The probe has adequate time response and 
spatial resolution ⇒ good diagnostic

Plasma current profiles
Plasma current time evolution
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A common issue: the calibration
1. Need to know absolute 

calibration: Gauss/Volts, 
A/Volts

2. Non-ideal effects of the 
probe: resistivity, capacity of 
the wire, coupling to the 
shield

3. Build equivalent circuit of 
the probe: frequency 
response

4. Extremely difficult procedure 
at high and low frequency
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Calibration may reveal important non-ideal effects

Equivalent circuitFrequency response

Non-ideal effects
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Te measurement: brief tutorial
on Thomson scattering (I)

Plasma

Injected laser beam

Scattered radiation

Principle: inject a laser beam 
through the plasma and measure 
the scattered laser radiation
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Brief tutorial on Thomson scattering (II)

Provided the following conditions are satisfied:

1. ωlaser >> ωpe=(nε2/e0me)1/2 => incoherent Thomson scattering

2. Classical approximation => no relativistic effects (Te<1 keV)

3. Electron Maxwellian distribution => 
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L interaction length
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Few practical considerations

total scattered power ~ ne
spectral distribution ~ f (ve)
HWHM ≈ 16 Te

1/2 Å (Te in eV)
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ne~1020m-3, L=1 cm, Ω~10−2 sr ⇒ Only 10-13 photons are collected 

Need for powerful lasers

Good design is crucial for SNR
MW → µW  ⇒
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Serious issues to take into account
• Minimization of stray laser light

- Long entrance and exit ports with baffles
- Laser exit dump

• Alignment
- Accurate intersection of laser beam with focal point of collection 

optics
- Avoid contact of laser beam with stray-light reducing components 

(e.g., baffles) along beam transport path
• Calibration

- Absolute wavelength position (using neon lamp)
- Absolute calibration for ne determination using known Rayleigh 

scattering cross section in nitrogen gas (few hundred Torr)
• Must contend with plasma background light

- Best possible SNR limited by bremmstrahlung
- other line radiation, especially Dα at 656.2 nm, may also be important
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Thomson scattering on FRX-L

• Quantel ruby laser (694.3 nm, 12 
J/beam)

• DEP gated intensifier (10% QE, 75 
mm, 30 ns exposure)

• PixelVision 512 × 512 16-bit cooled 
CCD

• Holographic grating spectrometer 1650 
mm-1, f/5 with coverage from 694.3–
656.1 nm

• Up to 6 viewing chords w/fiber bundles 
each with three 2 mm diameter quartz 
fibers and a f/4, 1.7 cm diameter lens
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Thomson scattering on TCV

1. Three Nd-Yag lasers
(1.04mm, 20Hz, 1J)

2. 25 point measurements
(4 cm resolution)

3. Polychromators with 3 
or 4 interference filters

4. Si-avalanche 
photodiodes

5. Optimized for 
Te>50eV, ne>1e18m-3

PolychromatorsGeometrical setup Collection optics
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Thomson scattering data on TCV
Advantages:

• Easy interpretation

• Te and Ne profiles

Disadvantages:

• Needs powerful lasers 
($$)

• Difficult measurement

• Small rep. Rate -> only 
small time scale 
phenomena
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Thomson scattering is inadequate to 
study fast MHD phenomena (sawteeth)

Sawtooth activity time scale

1. Ramp: >1 ms

2. Crash: <100 ns

Thomson Rep. Rate=60Hz

Need another diagnostic!




Ivo Furno, Plasma Physics Summer School, P-24 June 17th, 2004

Brief tutorial on radiation from plasmas
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Soft X-rays are detected by photodiodes
Si photodiodes
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Photodiodes can be filtered to stop 
high energy photons: ideal case
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If only Bremss is important and ne, nZ, Z are constant, it is 
easy to extract Te from two-foil measurements
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Real world is more complicated…

Ideal Only Bremss is
important: not true!!!

Profiles are
constant: not true!!!

Reality
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Two foil system setup on TCV
Photodiode setup

Preamps in
photodiode

Pin-hole

Be Filter

Three Si photodiodes filtered by 50, 150, 650 µm Be 
filter, 250 kHZ acquisition frequency (very fast)
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Reality: a perfect example of easy to make and 
difficult to interpret measurements

A strong modeling of the plasma is required to 
derive the electron temperature
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Te can be calculated with a lot of work and the 
time resolution is adequate to study ST activity

Advantages:

1. Inexpensive

2. Fast (250kHz)

Disadvantages:

1. Difficult to interpret

2. Only Te0 provided

3. Requires inversion 
procedure
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