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Why Study Plasma Spectroscopy?
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How a photon 1s emitted from plasma

e Quantum theory of particles and fields
- a photon is emitted or absorbed when the particle undergoes a transition
between two different states.
- Spontaneous emission, Absorption, and Induced emission.
 Typical plasma system: electrons are responsible for emission of photons.
- free-free transition (bremsstrahlung): initial and final state energy is in a
continuum.
- free-bound transition (recombination continuum): initial state energy is in
a continuum and final state is in a discrete energy state.
- bound-bound transition (line emission): initial and final state are in
discrete energy states.
 Excitation of electrons from ground state:
Power supply --> Electric fields --> Electron heating --> Ionization
(creation of additional electrons) and excitation (moving electrons from the
ground state to various excited atomic or molecular states).
e De-excitation of electrons: Spontaneous emission (e.g. excited state to ground
state) or Radiative recombination (free electrons to bound electrons)
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Emission intensity (a.u. 20 sec exposure)
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Emission intensity (a.u.)
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Basic of Plasma Spectroscopy

* Wien’s displacement law: maximum intensity of blackbody
radiation lies at AT= 250 nm eV
- Sun’s surface: 0.5 eV --> 500 nm (visible)
- Fusion reactor: 50 keV -->0.005 nm (hard x-ray)
- Cosmic background: 2.7 K(2.3x10* eV) -->1.1 mm (u wave)
 Different plasma state and radiation model used:
- Thermal equilibrium (TE): Planck’s law, doesn’t exit.
- Local Thermodynamic Equilibrium (LTE): particles are in
TE, but not radiation fields. High density, low temperature
plasma (e.g. 1 eV hydrogen plasma @ 10'7cm™)
- Collisional-Radiative (CR) model: most plasma system.
Complicated but lots to learn.
- Corona model: Very low density limit. Excitation by
electron collisions and de-excitation by spontaneous emission.



What you can tell from plasma emission spectrum

e Wavelength:
- location of line emission:identify chemical composition
e Intensity:
- proportional to emitting particles: density
e Shape of emission (intensity distribution over wavelength)
- Bremsstrahlung: temperature of free electrons
- Emissivity € ~ n,n /T "2 exp (-hv/kT)
- Doppler broadening: random velocity distribution --> temperature of ions
or neutrals
- 1 eV H atoms ~ 0.04 nm of Doppler half width (increase with T1/?)
- Doppler shift: macroscopic flow
- Pressure broadening: microscopic electric fields due to electrons and ions
(Stark Broadening) --> plasma density
- Zeeman splitting: magnetic fields strength
e Temporal and Spatial Variation of Plasma emission: time and space resolved
plasma dynamics (e.g. plasma fluctuation, end-point detection, etc).



Tools of (visible) plasma spectroscopy

* Detector: Measure the light intensity (a number of photons)
- CCD (charge coupled device):preferred choice of detector, quantum
efficiency (Q.E.) ~ 0.8, soft x-ray to visible and near infra-red region.
- Photomultiplier (PM) tube: good Q.E., fast time resolution (up to a few
ns), UV-visible-near infra-red.
- Photodiode: a cheap version of PM tube.
e Spectrograph: Disperse the light into different wavelength
- Filter: single selected wavelength region, can be a high resolution (1-2
nm or so), very high throughput.
- Prism: decent resolution (10 nm or so) and high throughput. Cheap.
- Grating: good resolution (0.1 nm or greater). widely used. low
throughput and expensive.
- Fabry-Perot Etalon or Interferometer: very good resolution (0.01 nm or
s0). low throughput and very limited scanning range.
e Collecting Optics: Lens, Mirror, Optical Fiber, Slit, Aperture, Chopper,
Polarizer, etc. Many different tools are available to optimize the need of
collecting lights into the detector (via spectrograph).
e Calibration: Blackbody radiation, calibrated tungsten lamp, mercury lamp,etc
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Emission intensity (a.u. 5 sec exposure)
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Electron temperature of Recombining helium plasma

® Boltzmann distribution: N /g. = N/g, exp (-(E-E))/kT), T, = 0.26+0.03 eV.
e Continuum emissivity ~ exp (-hv/kT), T, =0.3£0.03 eV.
* Good agreement between two temperatures (rarely happen)

Distribution of excited level population
Downstream (F5 = 5.4 mTorr)
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Electron density

e Advance of series limit (due to pressure broadening):
-log n, =23.26 - 7.5 log n_, (last state) -->n_ ~1.6x10'° cm3

Continuum spectrum
Advance of the series limit (to 2°P)
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Experimental setup
Atmospheric Pressure Plasma Jet (APPJ
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Gas temperature measurement

» Gas temperature measurement: from rotational intensity

distribution of atmospheric oxygen band.
* Ty (~ Tiyn ) ~ 50 - 300 °C << Electron energy (~10* °C)
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Neutral bremsstrahlung emission

ec+ A <-->¢+A + hv (A: atom)

 Typically smaller than e-i bremsstrahlung by 1072 or less.

e Dominant continuum source only when the ionization

fraction is very small, much less than 10-% (our case 10-%)

 Inverse process in astrophysics: opacity to stellar

atmospheres.

e Semi-classical calculation of emission cross section (from

Zel'dovich and Raizer), related to e-n momentum collision
do, 8e’v’

QN\
dv  3chv

o, 1s the e - n momentum cross section

e Result based on phase-shift approximation by Dalgarno and
Lane 1s used for analysis (using e-n momentum Cross section)



Electron density and temperature measurement

Absolute emission intensity (nW/cm > nm)

breakthrough in high pressure plasma study

Absolute plasma emissivity and N o T fitting

from midplane at 28 W/cm 3 in He (99.5%) and O 5 (0.5%)
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Summary

e Plasma Spectroscopy: a very power tool to study plasma
system (most plasma systems produce radiation)

* Choose wavelength region: each plasma system has a unique
wavelength region where it emits strongly.

. : Lots of tools available. Well suited for
many low temperature plasma system ( T, ~ 0.1 - 50 eV)

* Collisional-Radiative model applies to most plasma system:
complex and difficult to analyze. Need to be careful.

e If lucky, one can obtain many important information about the
plasma system (e.g. density, temperature, flow velocity, electric
and magnetic fields, chemical composition,etc.)



