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Outline

= Self-organization definition/examples

= Physics foundations

= Briefly: Driven Relaxation Experiment (DRX)
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Physics-

Self-organization is spontaneous generation
of large-scale structure in a turbulent medium
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Physies-

Why study plasma self-organization?

= |nspire an economic fusion reactor to help solve our
energy problems

= Explain puzzles in solar, space, and astrophysical
plasmas

=  Fundamental to field of turbulence
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Self-organization at work: Cyclonic and zonal
flows in planetary atmospheres
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Physic;-

Self-organized plasmas are good candidates
for alternate magnetic fusion energy concepts

Adiabatic compression of a
field-reversed configuration
(FRXL/MTF at LANL/AFRL):
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SSPX spheromak (at LLNL):
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Physics-

Self-organization may also explain cosmic
magnetic structures on widely varying scales

coronal mass ejection (CME)

Extra-galactic jets/lobes
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Self-organization is a consequence of three
physical properties of turbulent systems

=  “|deal invariants”

= “Selective decay”
o “Taylor relaxation”

= “Inverse spectral cascade”
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Physies-
Ideal invariants of a magnetohydrodynamic*
(MHD) system

2D MHD:

1 ‘
energy | — 5 /('L'2 -+ BQ) dQI

cross-helicity H(; = / v-B de?

mean square magnetic potential A= / "L’:'f}Q dQI

3D MHD: integrals become volume integrals

A replaced by magnetic helicity HM — /A - BdV

N

‘!:93 Alamos *come to July 13 lecture for MHD tutoriall




.
Physics-

Ideal invariants will decay in presence of
dissipation

3D MHD:
b — —1]/] dV — I//w dV.
dt

dH~ B . 1. ¢ /
df __(l/+,]>/J-w(1‘/~
dH _ _,77‘/j - BdV.
dt

where n is resistivity, v is kinematic viscosity, j is
current density, B is magnetic field, and w is vorticity
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Physies-

Ideal invariants decay at different rates
=> “selective decay”

dE
_ — — W / ~ BZ L3
e ER\ T A 5
dHn = —7]/J BdV. ~[B2][L4]
dt
dE /dHy _,
dt dt

If L very small, then |dE/dt| >> |dH_ /df| = energy
decays much more quickly than magnetic helicity!
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Physies-
Selective decay restricts system evolution to
certain preferred states

If magnetic helicity decays very slowly compared
to magnetic energy...

Model this process as variational problem (woltjer,
1958; Taylor, 1974):

5( / %(12 + B dV — %/\ / A-BdV) =0
Insert B=B, .+ 0B
Turn the crank and find B, satisfies:
VxB—-)AB=0

= j and B become aligned (“force-free”)
Wolter-Taylor relaxation
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“Taylor relaxation” in a plasma leads to
lowest (allowed) energy force-free state

Taylor relaxed states have A = global constant

Solutionsof V xB — AB =0
(in cylindrical coordinates) are Bessel functions
(Lundquist, 1950):

Bz = BO JO (7\.I’)

B, = By J,(A1)
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Reversed-field pinch (RFP) as a Taylor
relaxed state

Conducting Shell
Surrounding Plasma

Bodin & Newton, Nucl. Fus., 1980
» Los Alamos
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Spheromak as a Taylor relaxed state
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However, verification of magnetic helicity
conservation during relaxation still elusive

Best results so far are from RFP relaxation events:
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Physics-
Transfer process of an ideal invariant in k-space
Is called a “cascade” in turbulence

Equilibrium distribution in k-space
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Physies-

Cascade directions can be calculated or
numerically computed but need to be measured

= Calculate Fourier spectra using equilibrium distribution
iIn phase space given by Gibbs’ potential
Pg = Z exp(-aE - BHy, - YHC) (Frisch, 1975, JFM)

= Numerically solve via direct numerical simulation
(DNS) (many people doing this now)

= Ultimately, spectral densities need to be measured in a

laboratory experiment! (fame and glory guaranteed if you do this
for your PhD dissertation)
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Numerical simulations for 3-D MHD turbulence
show inverse cascade for magnetic helicity

» Los Alamos Pouquet et al., 1976, JFM




A plot of magnetic potential in 2-D MHD
turbulence illustrates effect of inverse cascade

earlier time later time
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Physics-

Aside: “Dynamo” is important related concept
for origins of (extra-)galactic magnetic fields

dynamo (kinetic energy dominant)

Kinetic
stirring
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Physies-
Driven Relaxation Experiment (DRX) will try to
create and sustain novel relaxed states

Physics goals of DRX:

10"

= Determine accessibility of A=A, 10'0 |

relaxed states; characterize them <RB>
(large-scale structure) o5

= Measure wavenumber spectrum
(cascade; dynamo or relaxation) 10°

0 6

2 4 5
= Explore dynamics of relaxation kC (e=10 ")
(mStab"'t'eS) Tang & Boozer, PRL, 2005
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Physies-

DRX conceptual design

A
< Capacitor bank
09m lpbias~ 1-5 mWb
< Helicity injector source
\/
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Flux conserving shell

Higher order relaxed states om0 e
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Physies-

Summary

= Plasma self-organization is a frontier research area in plasma
physics
e |nnovative fusion configurations
» Structure of extra-galactic magnetic fields
 Fundamental to turbulence studies

= Three key properties of turbulence lead to self-organization
e |deal invariants
e Selective decay
* Inverse cascade

= DRX, a new LANL experiment furthering studies of magnetic
relaxation
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Physies-

If you are interested in learning more...

= Reference texts
e D. Biskamp, Nonlinear Magnetohydrodynamics
e D. Biskamp, Magnetohydrodynamic Turbulence
 P. Bellan, Spheromaks
e U. Frisch, Turbulence

= Website of NSF Frontier Center on Magnetic Self Organization in
Laboratory and Astrophysical Plasmas: http://www.cmso.info

= Some graduate programs with opportunities in this area:
» Princeton (astrophysical sciences, program in plasma physics)
e Univ. of Wisconsin-Madison (physics)
 UCLA (physics & astronomy)
e Caltech (applied physics)
e Univ. of Washington (aeronautics & astronautics)

= Or contact scotthsu@lanl.gov
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