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• Maxwell-Lorentz description of plasma

• Kinetic description of plasma

– distribution function
– kinetic equation
– collision operator

• Multi-fluid description of plasma

– hierarchy of fluid equations
– typical truncation ⇒ continuity, momentum, and energy conservation
– heat fluxes and viscosities
– Braginskii closure for collisional plasma

• Single-fluid description of plasma (magnetohydrodynamics)
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Plasma

• Plasma is a quasineutral gas of charged and neutral particles in which
collective effects dominate over collisions

– quasineutrality ⇒ the external potential shielding length, Debye length λD,
is much smaller than the plasma dimensions, L:

λD ≡
√

Te

4πe2ne
� L

– can only talk about Debye shielding if the number of particles in the Debye
sphere (≡ plasma parameter), ND, is large:

ND ≡ 4
3
πλ3

Dne ≫ 1

– collective behavior ⇒ the frequency of typical plasma oscillations, ω, is
large compared with collision frequency with neutral atoms, τ−1:

ωτ > 1
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Maxwell-Lorentz Description
of Plasma
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Euler-Lagrange Equations

• View plasma as a collection of charged particles (use j to denote plasma species)

• Each (non-relativistic) charged particle can be described by the Lagrangian:

Lj(x, ẋ, t) =
mj|ẋ|2

2
− ejΦ(x, t) +

ej

c
ẋ ·A(x, t)

• The Euler-Lagrange equations of motion,

d
dt

(
∂Lj

∂ẋ

)
=

∂Lj

∂x

are equivalent to the Lorentz force law:

mjẍ = ejE +
ej

c
ẋ×B,

with E ≡ −∇Φ− 1
c

∂A

∂t
, B ≡ ∇×A
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Maxwell Equations

• E and B obey the Maxwell equations:

∇ ·E = 4πρc, ∇×B − 1
c

∂E

∂t
=

4π

c
J , ∇ ·B = 0, ∇×E +

1
c

∂B

∂t
= 0

• The interactions of the fields and the particles occur only through the plasma
charge density ρc and current J

• If we assume i = 1, . . . , Nj particles of the species j at positions (xi
j,v

i
j) then

ρc(x, t) =
∑

j

ejnj(x, t) with nj(x, t) =
Nj∑
i=1

δ(x− xi
j(t)),

J(x, t) =
∑

j

ejnj(x, t)V j(x, t) with nj(x, t)V j(x, t) =
Nj∑
i=1

vi
j(t)δ(x−xi

j(t))
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Maxwell-Lorentz Description in not Useful

• The Lorentz force law + the Maxwell equations give exact and complete
description of plasma motions

• These equations are not useful since it is neither possible, nor even desirable,
to know positions and velocities of all plasma particles

• Plasma physics derives approximate sets of equations that are tractable

• Kinetic theory replaces the Lorentz force law with an equation for smoothed
particle distribution function in phase space

• Fluid theory derives equations directly for plasma density and current and
usually requires only minimal information about the particle distribution
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Kinetic Description of Plasma
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Distribution Function

• Kinetic theory provides, for each species j, a distribution function fj(x,v, t),
such that fj(x,v, t) dxdy dz dvx dvy dvz is the number of species-j particles
around point (x, y, z), having velocity (vx, vy, vz), at time t

• It is sufficient to determine fj as a function of E and B to close the Maxwell
equations, since

ρc(x, t) =
∑

j

ej

∫
d3v fj(x,v, t)

J(x, t) =
∑

j

ej

∫
d3v vfj(x,v, t)

• The distribution function fj is obtained from a kinetic equation
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Kinetic Equation

• Assume no atomic and nuclear reactions ⇒ particles of each species are
conserved

• Then each distribution function is conserved along particle trajectories:

∂fj

∂t
+ v ·∇fj + aj ·

∂fj

∂v
= 0, aj =

ej

mj

(
E +

1
c
v ×B

)

• E and B in aj include external forces and electromagnetic interactions of all
the particles ⇒ aj is pathologically jagged (depends on the positions and
velocities of all the particles)

• Average fj and aj over an ensemble of macroscopically equivalent plasmas ⇒
get smooth functions f̄j ≡ 〈fj〉ensemble, āj ≡ 〈aj〉ensemble

• Because of particle interactions 〈aj · (∂fj/∂v)〉ensemble 6= āj · (∂f̄j/∂v) ⇒
must include collisions
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Collision Operator

• As a result, all kinetic equations have the form (suppressing the overbars):

∂fj

∂t
+ v ·∇fj + aj ·

∂fj

∂v
= Cj(fj)

• Collision operator Cj provides a statistical account of random interactions of
particle species j with other particles; binary collisions are normally considered

• There is no exact version of the collision operator, only approximations

• Examples are Boltzmann collision operator, Fokker-Planck collision operator

• Collision operator Cj =
∑

k Cjk(fj, fk) is

– bilinear, that is Cjk(fj, fk) are linear in fj, fk

– cause entropy to increase
– Galilean invariant, that is Cjk(fj(v − V ), fk(v − V )) = Cjk(fj(v), fk(v))
– conserve particles, momentum, and energy at each x
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Kinetic Description of Plasma in Rarely Effective

• Evaluation of a 6D distribution function is difficult: analytical solutions to a
kinetic equation are rare and numerical are expensive

• Closing the Maxwell equations with the kinetic equation is inefficient since only
two lowest order moments of fj (namely density and flow) are required, while fj

contains enormously more information

• In other words, fj itself does not matter, since closure of the Maxwell equations
involves only an equivalence class of distributions, whose different members,
however various, have the same density and flow

• Fluid descriptions can be much more effective

• However, sometimes one cannot avoid solving a kinetic equation ⇒ use a
somehow simplified version (e.g. drift kinetics, gyrokinetics)
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Multi-fluid Description of Plasma
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Continuity, Momentum, and Energy Conservation

• Evaluate
∫

d3v,
∫

d3v v, and
∫

d3v (mjv
2/2) integrals of a kinetic equation

• Resulting are continuity, momentum conservation, and energy
conservation equations for each particle species j:

∂nj

∂t
+ ∇ · (njV j) = 0,

mjnj

(
∂V j

∂t
+ V j ·∇V j

)
+ ∇pj + ∇· ↔π j= ejnj

(
E +

1
c
V j ×B

)
+ F j,

∂

∂t

(
3
2
pj +

1
2
mjnjV

2
j

)
+ ∇ ·

[(
5
3
pj +

1
2
mjnjV

2
j

)
V j + qj+

↔
π j ·V j

]
=

Wj + V j · (F j + ejnjE)

for density nj ≡
∫

d3vfj, flow velocity V j ≡ n−1
j

∫
d3vvfj, and pressure

pj ≡
∫

d3v(mjw
2/3)fj with w ≡ v − V j
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Hierarchy of Fluid Equations

• An equation for every moment of fj contains higher order moments of fj and
possibly some moments of the collision operator

– continuity for nj =
∫

d3v fj contains V j = n−1
j

∫
d3v vfj

– momentum for V j = n−1
j

∫
d3v vfj contains pj =

∫
d3v (mjw

2/3)fj,

viscosity tensor
↔
π j=

∫
d3v mj[ww − (w2/3)

↔
I ]fj with

↔
I = unit tensor,

and friction force F j ≡
∫

d3v mjvCj

– energy for (3/2)pj + (1/2)mjnjV
2
j =

∫
d3v (mjv

2/2)fj contains heat flux
qj =

∫
d3v (mj/2)w2wfj and energy exchange term

Wj ≡
∫

d3v (mjw
2/2)Cj

• Can evaluate
∫

d3v (mjv
2v/2) integral of a kinetic equation to obtain an

equation for qj and keep on going ⇒ an infinite hierarchy of fluid equations
that is equivalent to the full kinetic equation

• Alternatively, can use a kinetic equation to evaluate
↔
π j, qj, F j, and Wj in

terms of nj, V j, and pj ⇒ multi-fluid closures
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Multi-fluid Closures

• To evaluate
↔
π j, qj, F j, and Wj in terms of nj, V j, and pj have to solve a

kinetic equation for fj analytically in terms of nj, V j, and pj and then evaluate
its appropriate velocity integrals

• This has only been done rigorously so far only for collisional plasmas when

λj

L
� 1,

where λj ∼ vTjτj is the species j mean-free path with vTj the thermal speed
and τj the characteristic collision time, and L is the characteristic plasma length
scale

• The best-known two-fluid closure (for plasma consisting of electrons and one ion
species) was obtained by the Soviet plasma physicist S. I. Braginskii in 1952

• Instead of looking at the exact expressions let’s make some estimates

15



Gas-kinetic Estimates

xx  -∆x0 x +∆x0x 0

n(x)
i+

i-

• Consider diffusion of particles with a
density profile n(x) 6= constant

• Assume that during the time τ
between collisions every particle can
move a distance ∆x to the left or to
the right with a probability 1/2

• In unit time 1/2 of all particles
experiencing collisions in a layer
(x0 −∆x, x0) would cross the plane
x = x0 from left to right

• Expanding n(x) = n(x0) + (∂n/∂x)|x=x0(x− x0) we find the flux from left to
right:

i+ =
1
2

∫ x0

x0−∆x

n(x)
τ

dx =
1
2

[
n(x0)−

∂n

∂x

∆x

2

]
∆x

τ
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Gas-kinetic Estimates (Continued)

• Similarly, the particle flux from right to left is

i− =
1
2

[
n(x0) +

∂n

∂x

∆x

2

]
∆x

τ

• Then, the diffusion flux along x, ix = i+ − i− = −D
∂n

∂x
, D ≡ (∆x)2

2τ

• Similarly, a temperature gradient along x produces a heat flux

qx = −κ
∂T

∂x
, κ ∼ n(∆x)2

τ
∼ nD

• Similarly, if a velocity Vy changes along x then there is a flux πyx of the
y-directed momentum along x:

πyx = −η
∂Vy

∂x
, η ∼ mn(∆x)2

τ
∼ mnD
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Parallel and Perpendicular Heat Fluxes

• The expression for κ provides estimates for electron and ion heat fluxes along
and across magnetic field B

• Heat conduction along B

– ∆xj ∼ λj(≡ mean free path) ∼ vTjτj ⇒ κ‖j ∼ njλ
2
j/τj ∼ njTjτj/mj

• Heat conduction across B

– ∆xj ∼ rj(≡ gyroradius) ∼ vTj/Ωj ⇒ κ⊥j ∼ njr
2
j/τj ∼ njTj/(mjΩ2

jτj)

• Then, κ‖j/κ⊥j ∼ (Ωjτj)2

• For Coulomb collisions with Te ∼ Ti, τe/τi ∼ (me/mi)1/2 . 1/40 � 1

– κ‖e/κ‖i ∼ (mi/me)1/2 � 1 ⇒ electron heat conduction along B is higher

– κ⊥e/κ⊥i ∼ (me/mi)1/2 � 1 ⇒ ion heat conduction across B is higher
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Diamagnetic Heat Fluxes

x

y

z

B
q

T∆

• In addition to the parallel and
perpendicular heat fluxes just
considered, which are parallel to ∇T ,
there exist electron and ion heat
fluxes perpendicular to ∇T

• Occur since particles gyrating up
(see figure) are hotter (and therefore
faster) than those gyrating down

• If the up and down particle fluxes,
Γ± ∼ njvTj, are equal, fractions
(rj/Tj)(∂Tj/∂x) of the up and down
heat fluxes, q± ∼ njTjvTj, remain
uncompensated

• This leads to qy ∼ (rj/Tj)(∂Tj/∂x)njTjvTj ∼ (cnjTj/eB)(∂Tj/∂x)

• These diamagnetic heat fluxes carry heat along isotherms and have opposite
signs for e and i
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Braginskii’s Expressions for qj etc.

• In his work Braginskii obtained for the ion heat flux using kinetic theory

qi = −
(

3.9
niTiτi

mi

)
︸ ︷︷ ︸

κ‖i

∇‖Ti −
(

2
niTi

miΩ2
i τi

)
︸ ︷︷ ︸

κ⊥i

∇⊥Ti +
(

5
2
cniTi

eiB

)
b̂×∇Ti

with b̂ ≡ B/B

• Electron heat flux contains similar temperature gradient terms plus some
additional terms

• Expressions for viscous stress tensors
↔
π j, electron-ion friction forces F j, and

electron-ion energy exchange terms Wj also can be estimated using the
gas-kinetic-like analysis and were obtained exactly by Braginskii from kinetic
theory
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Single-fluid Description of
Plasma

21



Motivation for Single-fluid Description

• Exact multi-fluid equations require kinetic evaluation of
↔
π j, qj, F j, and Wj

• People have not figured out yet how to do this for hot fusion-grade plasmas or
low-density astrophysical plasmas, which have very long mean-free paths
compared with characteristic plasma length scales

• Rigorously speaking, have to use full Maxwell-kinetic formalism

• However, certain important phenomena can be understood by using very simple
approximations for these quantities or even by neglecting some of them

• Magnetohydrodynamics (MHD) does just this by writing fluid equations for a
single fluid - highly conductive magnetized plasma
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Assumptions for MHD Equations

• Assume plasma consists of electrons and singly-charged ions

• Concentrate on low-frequency, long-wavelength phenomena ⇒ quasineutrality
ne ≈ ni ≡ n

• Assume the ion gyroradius is small, ri � L (strong B), and particle mean-free
paths are small, λi ∼ λe � L (strong collisionality)

• Neglect heat fluxes, viscosities, electron-ion friction forces (in Ideal MHD), and
electron-ion energy exchange terms (equivalent to assuming Te = Ti)

• Neglect electron mass, me = 0

• Introduce mass density ρ ≡ min, fluid velocity V = V i, and total pressure
p ≡ pi + pe

• As a result get “very simple” MHD fluid equations
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Ideal MHD Equations

• Rewrite two-fluid equations as (with d/dt ≡ ∂/∂t + V ·∇)

dρ

dt
+ ρ ∇ · V = 0

ρ
dV

dt
=

1
c
J ×B −∇p

dp

dt
+

5
3

p ∇ · V = 0

E +
1
c
V ×B = 0

∇×E = −1
c

∂B

∂t

∇×B =
4π

c
J

∇ ·B = 0
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Comments on MHD Equations

• All MHD assumptions but the strong collisionality assumption, λi ∼ λe � L,
are satisfied for fusion-grade plasmas

• Does it mean that we should not use MHD?

• No! There are deep underlying reasons why MHD is actually valid well beyond
its formal applicability region and is thereby useful but do not have time to go
into this

• The rule of thumb:

– if Ideal MHD predicts instability you are dead
– if Ideal MHD predicts stability some other unpleasant instabilities can still

exist but you might have a chance
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Conclusions

• We considered four ways of describing plasma: Lagrange equations, kinetic
equations, multi-fluid equations, single-fluid equations AND Maxwell equations

• Lagrange (or Lorentz) equations are exact but not useful since need positions
and velocities of all particles

• Kinetic equations for particle distribution functions are more tractable but give
more information then required and still are very complicated

• Multi-fluid equations are much simpler, describe physically observable quantities
(such as densities, flow velocities, and temperatures or pressures), but can only
be rigorously derived for collisional plasmas

• Single-fluid MHD equations are simplest, work well beyond their formal
applicability region, and provide a useful simplified plasma description
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