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OutlineOutline

• Plasma jets driven magnetoinertial fusion
• HEDP regime definition
• Analytical Imploding Shock Models
• Results
• SPHC results
• Plasma jet estimates
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ObjectiveObjective

• Identify high energy density physics (HEDP)
regime accessible by converging shocks

• Explore feasibility of plasma driven
magnetoinertial fusion

• Assess smooth particle hydrodynamics as
numerical approach for fusion/HEDP studies
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High Energy Density Physics RegimeHigh Energy Density Physics Regime11

Objective
Identify (HEDP)
regime accessible
by a converging

plasma liner

1Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (2003) 
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IntroductionIntroduction

The MIF regime is important for the following reasons:
1. fusion reactivity scales as n2

2. characteristic plasma scale-lengths decrease with density
3. the magnetic field reduces thermal conduction losses, allowing

relatively slow compression of the target

Minimum Plasma
Energy Required

to Ignite the
Plasma (Q=1)
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Plasma Liner ImplosionPlasma Liner Implosion

Plasma Liner
driven MTF in
a Cylindrical

Geometry

Francis Thio originally conceived a plasma liner as a standoff driver for
MTF

Advantages of plasma liners:
• Drivers can be positioned at a safer distance from fusion event
• Liner formation is repratable
• Potential for secondary fusion burn of the liner material

Plasma jet

Plasma gun

Magnetized Target
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ModelsModels

• Analytical Models
– Noh Problem
– Self Similar Converging Shock

• Numerical Models
– SPHC (Lagrangian Hydrodynamic)
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The Noh ProblemThe Noh Problem
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Self Similar Converging ShocksSelf Similar Converging Shocks
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Similarity variable:

         Substitutions:

      Resulting ODE’s
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Self Similar Converging ShocksSelf Similar Converging Shocks

• Solution is found by
splitting problem
into 3 distinct
regions

• ODE’s are
decoupled, and
different forms used
for incoming and
reflected shocks
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Smoothed Particle HydrodynamicsSmoothed Particle Hydrodynamics

• Gridless Lagrangian technique
• Differential interpolant of a function

constructed from its values at the particles
using a differential kernel

• Integral interpolant of a function is:
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Smoothed Particle HydrodynamicsSmoothed Particle Hydrodynamics

• Integral interpolant can be approximated by
summation interpolant

• Derivatives are straightforward
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Noh ProblemNoh Problem
(cylindrical symmetry)(cylindrical symmetry)



University of Alabama in Huntsville

Noh ProblemNoh Problem
(cylindrical symmetry)(cylindrical symmetry)
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Noh ProblemNoh Problem
(cylindrical symmetry)(cylindrical symmetry)
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Noh ProblemNoh Problem
(spherical symmetry)(spherical symmetry)
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Noh ProblemNoh Problem
(spherical symmetry)(spherical symmetry)
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Noh ProblemNoh Problem
(spherical symmetry)(spherical symmetry)
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Noh ProblemNoh Problem
(cylindrical symmetry)(cylindrical symmetry)
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Noh ProblemNoh Problem
(spherical symmetry)(spherical symmetry)
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Self Similar Converging ShocksSelf Similar Converging Shocks
(cylindrical symmetry)(cylindrical symmetry)
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Self Similar Converging ShocksSelf Similar Converging Shocks
(cylindrical symmetry)(cylindrical symmetry)
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Self Similar Converging ShocksSelf Similar Converging Shocks
(cylindrical symmetry)(cylindrical symmetry)
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Self Similar Converging ShocksSelf Similar Converging Shocks
(spherical symmetry)(spherical symmetry)
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Self Similar Converging ShocksSelf Similar Converging Shocks
(spherical symmetry)(spherical symmetry)
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Self Similar Converging ShocksSelf Similar Converging Shocks
(spherical symmetry)(spherical symmetry)
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SPHCSPHC
60 jets, 200 km/s, 60 jets, 200 km/s, γγ=1.67=1.67

Peak pressure is
~0.7 Mbar
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SPHCSPHC
 60 jets, 200 km/s,  60 jets, 200 km/s, γγ=1.40=1.40

Peak pressure is
~3.0 Mbar
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Some Rough Estimates of Plasma JetSome Rough Estimates of Plasma Jet
Requirements for Accessing HEDPRequirements for Accessing HEDP

• Spherical symmetry
• High Z liners so effective γ<5/3
• Jet Velocities of ~200 km/s
• Initial Density of > 1025 m-3


